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Chapter 1

Introduction

This thesis provides an introduction to the use of Compton Backscatter X-ray Imaging

in precision agriculture. We will explore the use of this imaging technique on specialty

crops and some sample results. A method of estimating crop yield using backscatter

X-Ray imaging will also be proposed.

1.1 Precision Agriculture

Precision agriculture as defined by the USDA is “a management system that is infor-

mation and technology based, is site specific, and uses one or more of the following

sources of data: soils, crops, nutrients, pests, moisture, or yield, for optimum profitabil-

ity, sustainability and protection of the environment.” [2] This paper is interested in

yield monitoring systems; ways of spatially and temporally measuring agricultural yield,

specifically in specialty crops. Using information collected by yield monitoring systems,

growers can make informed decisions about the management of crops on a farm. The

fine spatial resolution of modern yield monitoring systems allow growers to use targeted

1
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irrigation, fertilization, and pest management schemes in order to optimize the output

of their farm based on the capability of their plots of land. Precision agricultural tech-

niques also allow growers to be more environmentally conscious when making decisions

regarding crop care via the ability to identify land that should be taken out of production

due to environmental concerns.

As well as environmental benefits, precision agriculture can provide substantial economic

benefit to farmers. The ability to improve crop yields along with the decreased costs

associated with better targeted irrigation and fertilization provides a financial benefit

to farmers. Technology involved in precision agricultural practices can be a large initial

investment for crop growers. In spite of this, in some cases the use of precision agriculture

has been able to provide farmers with a ROI in as little as 2-5 years from the initial

financial outlay. [3]

1.2 Specialty Crops

Specialty crops, contrary to what their name may imply, make up a large proportion of

US agriculture. Recently specialty crops have come to make up thirty to forty percent of

the total value of US crops. [4] As defined by AMS, specialty crops are “fruits, vegetables,

tree nuts, dried fruit, and horticultural and nursery crops, including floriculture.” [5] In

this paper we are mainly interested in horticulture, ”the science and art of producing,

improving, marketing, and using fruits, vegetables, flowers, and ornamental plants.” [6]

The crop discussed in most detail in this paper is trellis grown apple trees. Ground

grown strawberries and trellis grown tomatoes will also be investigated.
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1.3 Measurement Methods

There are various methods of determining crop yield in specialty crops. Currently, many

growers use a method of yield estimation that involves a manual count of the agricultural

product (fruits, nuts, vegetables...) on an individual plant and extrapolating this count

in order to get an estimate of the overall yield of the crop. [7]

In some cases estimating yield is more a mix of art and science than pure science. An

example of this can be seen in one current way that apple yield is estimated. Experienced

field scouts are sent into orchards in order to take a manual count of the number of

apples on a tree. This count can be obtained by exhaustively counting the total number

of apples on an individual plant or by counting the number of fruit on a series of limbs

across a few trees. This count is then extrapolated in order to estimate the number of

fruit in the orchard. Once the fruit count is obtained, the average size of the fruit on the

trees must be estimated. This can be obtained by sampling the size of individual fruit

across a series of plants. These two estimates are then compared to models developed

by monitoring specific varieties of trees for a number of years in order to estimate the

overall yield of the orchard. [7] These yield estimates are not very robust, given that

not all cultivars of apple are modeled for every growing region.

There are also ways of using remote sensing in order to spatially determine crop yield

across a farm. These methods focus on using satellite imagery in combination with

ground samples (soil, moisture, ...) in order to estimate stress on an area of plants. [8]

The method of measurement that this paper is interested in is a direct estimate of the

agricultural product across a group of plants. An image of a plant is generated using X-

Ray backscatter imaging and fed into computer software that identifies various aspects

of the image. Once all of the aspects are identified a spatial estimate of the crop yield
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can be calculated. This provides a yield estimate with high spacial resolution necessary

for precision agriculture.

1.4 Imaging Modalities

While the remote imaging method of yield estimated discussed in 1.3 can provide a

count across a plot, this count is coarse. One fine yield estimation method currently

being researched is imaging in the visible spectrum with an RGB camera and counting

the fruit visible in the images. [9] While this method provides promising results, the

obscuration of the fruit by the foliage of the plants can cause problems when trying to

estimate the number of fruit on an individual plant. Thermal cameras have also been

used to estimate fruit count, but similarly to RGB cameras suffer from problems due to

obscuration. [10]



Chapter 2

Background of Imaging

Methodology

Due to the issues of obscuration discussed in 1.4, Compton Backscatter X-Ray was

chosen as an imaging technology that would provide foliage penetration. This allows

crop yields to be estimated without needing to account for fruit obscured by leafage.

2.1 Overview

The basis of Compton Backscatter X-Ray imaging is the Compton Scattering effect.

Compton Scattering is “the scattering of a high-energy photon with loss of energy that

occurs in the Compton effect.” [11] By exciting materials with X-Ray radiation and

measuring the scattered photons, an image can be constructed that is representative of

the materials present in the imaging field scanned by the X-Ray beam. The resulting

image is similar to a traditional transmission X-Ray image, but does not require the use

of a detector situated behind the target being imaged.

5
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2.2 Compton Shift

The primary physical property that makes Compton Backscatter imaging possible is the

Compton Shift effect. Compton Shift occurs when a primary light quantum k0 collides

with a free electron 2.1 (assumed to be initially at rest).

p0 = 0, E0 = µ = mc2 (2.1)

When these two particles collide the electron recoils. Due to conservation of momentum

when light quanta interact with free electrons, the electron absorbs some momentum

and energy from the initial quantum. 2.2

p = k0 − k (2.2)

E + k = k0 + µ (2.3)

Because of 2.2 and 2.3 there is a shift in the frequency of the quanta. Taking into

account the relativistic energy-momentum relation 2.4 and the angle θ between k0 and

k we arrive at a formula describing the frequency shift between the two quanta. 2.5

p2 = E2 − µ2 (2.4)

k =
k0µ

µ+ k0(1− cos θ)
(2.5)

By using the relationship between wavelength and the frequency of the particle 2.6 we

can arrive at a formula describing the shift in wavelength of the quantum. 2.7

λ =
~c
k
∼ ~c

k
≡ λ0 (2.6)
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λ− λ0 =
~
mec

(1− cos θ) (2.7)

Figure 2.1: Compton Scatter

Recoil
Electron

Incident Photon

Scatter
Photon

Compton Scattering is a specific case of quantum electrodynamic scattering described by

the Klein-Nishina formula, which gives the differential cross section of photons scattered

from a free electron, that occurs at higher frequencies(X and γ rays).

2.3 X-ray Generation

The Compton Backscatter X-Ray imager used in this thesis generates X-Rays using an

X-Ray tube. The tube generates X-Rays through an effect known as Bremsstrahlung as

well as K-shell emission.
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Figure 2.2: X-Ray Tube [1]

Within the X-Ray tube there is an electron gun that fires a beam of electrons at a heavy

metal target, in many cases tungsten. When these electrons collide with the tungsten

target they quickly decelerate and emit electromagnetic radiation. When the electrons

are accelerated to a high enough energy they will emit radiation in the form of X-rays.

The radiative cross section χ(ω), which represents the likelihood of a such a scattering

event emitting Bremsstrahlung radiation, is shown in 2.8 below. [12].

χ(ω) = A

[
ln

2λγ2Mv2

~ω
− 13

12

]
, A =

16

3

Z2e2

c

(
z2e2

Mc2

)2 ( c
v

)2
(2.8)

K-Shell emission, also known as characteristic radiation, occurs when an electron in the

outer shell of an atom drops into the atom’s inner shell. [13] High energy X-Rays can

knock electrons out of the inner shell of an atom. This leaves an electron hole can then be

filled by an electron from one of the atom’s outer shells. When the higher energy electron

drops shells, the difference in energy between the outer and inner shells is emitted as an

X-ray photon. Different materials have unique K-Shell emission signatures.
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Both Bremsstrahlung and K-Shell radiation can be seen in the sample spectra from a

tungsten anode X-Ray tube in figure 2.3.

Figure 2.3: Typical Spectrum for Tungsten-Target X-Ray Tube

Bremsstrahlung radiation makes up the smooth base curve of the emission spectrum

while K-Shell radiation forms the prominent peaks.

Due to the way that X-Ray tubes generate X-Ray radiation, both the frequency and the

number of X-Ray photons that are emitted from the tube can be altered. Increasing

the current through the cathode heating filament will increase the temperature of the

cathode itself, allowing more electrons to be ejected from the cathode and collide with the

anode, thus increasing the overall number of scattering events and therefore the number

of scattered X-Ray photons. By changing the voltage between the cathode and anode,

the velocity and therefore energy of the electrons that collide with the anode can be
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altered. As can be seen in 2.8 this will change the overall spectra of the Bremsstrahlung

radiation emitted from the anode.

2.4 Generating an Image

In order to generate an image using Compton Backscatter X-Rays, a thin beam of X-

Rays is scanned along the object that is being imaged. The X-Rays photons collide with

free electrons in the object and are scattered. Due to Compton shift, these scattered

photons are of decreased wavelength and can be detected using sensors in the imaging

device. The detected signal is then processed using various signal processing techniques

and used to construct an image. [14] Objects with different average atomic masses (Z

number) will appear as differently on the resulting image, due to different probability of

scatter occurring.



Chapter 3

Experimental Setup

3.1 Compton Backscatter Imaging Equipment

Two different imaging systems were used over the course of this thesis. Both units,

sourced from AS&E, operate using the same basic principles. The key differences be-

tween the two involve the size of the units, the amount and energy of X-Rays that the

units emit, and the size of the area that can be imaged using each unit.

3.1.1 Unit Internals

At their cores, both units have an X-Ray tube enclosed within a chopper wheel. 3.1

This chopper wheel takes the X-Ray radiation emitted by the tube and directs it into

a pencil-width beam that is vertically scanned. The vertically scanned beam is moved

horizontally along a target by either rotating or translating the device, and as a result

a moving point on the target is illuminated by X-Ray radiation.

11
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Due primarily to the Compton effect discussed earlier, the X-Ray radiation from the

beam interacts with electrons in the target via Compton Scattering and lower energy

photons are emitted. These scattered photons are then detected using sensors in the

front of the unit. Due to the probabilistic nature of the scattering effect, different

amounts of detected scattering can be related to the density (Z number) and thickness

of the objects being scanned. Thus, the signal from these detectors can be reconstructed

into an image that is representative of the object being scanned. [15]

Scanned Area Backscatter

Chopper Wheel

Pencil Beam

Target

Pencil Beam

Figure 3.1: Backscatter X-Ray Imager Chopper Wheel

3.1.2 ModBX

The ModBX unit is an experimental scanner mounted on a mechanical turret. It can

be used to take both axial scans using the in-built turret; or the entire scanner can be

moved across a target in order to take a linear scan. The scanner has a variable scan time

between 15 and 120 seconds and an 140keV, 550W X-Ray tube. The ModBX scanner

has three scan heights that it can select; low, middle, and high. The low scan height

directs the scanning beam to the area immediately in front of and below the scanner,

the middle scan directs the beam towards the front of the scanner, and the high scan

directs the scan immediately in front and below the scanner.
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Figure 3.2: AS&E Mod BX Scanner and Scanner Being Used in Middle Scan Mode

3.1.3 Mini-Z

The Mini-Z scanner unit is a miniaturized version of the chopper wheel backscatter X-

Ray scanner described in 3.1.1 [16]. It is handheld and is manually swept across the

target. The scanner has a variable scan time between 5 and 45 seconds and an 70keV,

10W X-Ray tube. The Mini-Z scanner has a nominal scan speed of 15cm/sec. [17]

Figure 3.3: AS&E Mini-Z Scanner

3.2 Target Crops

Three different crops were scanned using Compton Backscatter X-Ray imaging. These

crops were trellis grown apples, ground grown strawberries,and trellis grown tomatoes.
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The details of this process are discussed in detail in chapter 4.



Chapter 4

Imaging

4.1 Apples

Trellis grown apples at an orchard in Biglerville, PA were scanned using the ModBX

scanner described previously. 3.1.2 The trees were scanned in two different ways. Firstly,

the scanner was situated about 3.5m from the base of the trees and was allowed to axially

scan a subsection of the row of trees using the turret built into the base of the scanner.

Next, the scanner was moved parallel to the row of trees and allowed to radially scan a

subsection of the row. The tree crowns were about 3m from the ground and the scanner

was mounted to the tines of a tractor and leveled.

15
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Figure 4.1: ModBX Scanner Prepared for a Radial Scan

4.1.1 Axial Scan

Due to the geometry of the projected beam when performing an axial scan, there is a

slight barrel distortion effect that occurs, in which objects at the far left and right of the

scan appear smaller than objects near the center. Also, due the strength of the X-Ray

beam incident upon objects decreasing with increased distance between objects and the

X-Ray emitter, distant objects appear more dimly in the images than objects closer to

the scanner.
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Figure 4.2: Axial Scan and Photograph of Trellis Planted Apple Trees

Due to the higher apparent density of the apples and trunk as compared to empty areas

containing mostly foliage, these appear as light areas on the image. As can be seen in

figure 4.3 many of the apples that are obscured in the photograph are clearly visible

in the Backscatter X-Ray scan. There is also a horizontal line dividing the top and

bottom half of the image. This is due to the way that images were reconstructed from

the ModBX’s middle and low scan settings. 3.1.2
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4.1.2 Radial Scan

As discussed earlier, axial scans performed using the Mod BX scanner suffer from dis-

tortion and detection issues involving the increased distance that objects at the edges

of the scan are from the scanner. One way to alleviate these problems is by moving

the scanner linearly along the target that is being scanned. The ModBX scanner was

mounted on a tractor so that the scanning beam was emitted perpendicularly to the

tractor’s direction of movement. The tractor then moved along the row of apples as the

scanner was running in order to generate a radial push broom scan.

Figure 4.3: Radial Scan of Trellis Planted Apple Trees

As can be seen by looking at the bases of the trees in this scan, there is no barrel

distortion in the radial scan. The trees scanned were also equidistant from the scanner

due to the geometry of the radial scan allowing for even intensity across the scan. One

of the disadvantages of radially scanning with the modBX scanner is that the scanning

apparatus must be moved very slowly, on the order of .05m/s, in order to prevent the

scanner from being jarred by sudden movements due to uneven ground.
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4.2 Strawberries

Ground grown strawberries in Tampa, Florida were scanned using the handheld Mini-Z

scanner. The Mini-Z scanner was held, pointed downward, about .5m above the plants

and carried along a subsection of a row of plants.

Figure 4.4: Scan and Photograph of Ground Planted Strawberries

As can be seen in the above image, many of the strawberries are fully obscured by

the foliage of the plants in the photograph. The X-Ray beams successfully penetrated

the upper foliage layer, allowing the backscatter image to reveal the underlying plant

structure. In the backscatter image, the soil bundled in plastic that the strawberries are

grown in, visible as black material in the photograph, appears as a hazy background in

the upper half of the image.

4.3 Tomatoes

Trellis planted tomatoes in Naples, Florida were also scanned using the handheld Mini-Z

scanner. In this situation the scanner was held approximately 10cm from the sides of the
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tomato plants and was scanned vertically along individual plants, as well as horizontally

along sections of the plant rows approximately 3m long.

Figure 4.5: Photograph of Trellis Planted Tomatoes. Courtesy of Lipman Produce.

Figure 4.6: Vertical Scan of Tomato Plant

Trellis planted tomatoes have dense foliage cover and grow in rows with tightly inter-

twined plants. This makes seeing tomatoes growing on the plant with RGB cameras

difficult. As was the case with apple trees and strawberry plants discussed earlier, the
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X-Ray beam from the backscatter X-Ray machine was able to penetrate the outer foliage

of the plant, revealing the inner plant structure and fruit.

Figure 4.7: Horizontal Scan of Tomato Plants



Chapter 5

Sample Analysis of Image

In this chapter an algorithmic method of estimating crop yield of trellis planted apple

trees will be explored. Raw images of the tree will be filtered. A method of detecting

apple tree trunks will be discussed. This method was derived from methods used to

detect ocular blood vessels with modifications made to better suit this application. [18]

Pseudocode detailing the overall algorithm can be found in appendix A. [19]

22
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5.1 Process overview

Figure 5.1: Scan of Apple Tree from ModBX Backscatter X-Ray Imager

5.1.1 Filtering Images

AS&E back-scatter X-Ray imagers have inbuilt signal processing algorithms that, due

to their proprietary nature, will not be discussed in this paper. Although the images

received from the devices are already pre-processed, because of the X-Ray backscatter

imaging process, there is still a significant amount of salt and pepper noise present in

the final images. One commonly accepted method of noise-removal used to deal with

this type of noise in X-Ray images is median filtering. [20] As such, a 3px by 3px median

filter is applied to the image before processing.

The median filter effectively eliminates some of the salt and pepper noise of the image,

but this has the negative effect of softening the image overall by removing fine detail.

Because we are interested primarily in the general location of the tree’s trunk this is not

a serious issue.
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Figure 5.2: Scan After Application of Median Filter

Next, adaptive histogram equalization is applied to the image in order to increase the

contrast in the image. As can be seen in figure 5.3 this causes the trunk and apples to

stand out more readily from the background of the image.

Figure 5.3: Adaptive Histogram Equalization

5.1.2 Processing Using Structured Elements

After filtering, the images are processed using morphological image processing to remove

certain features of the image. [21] First, a circular 2d structured element is created with

a radius about equal to the radius of an apple in the image and a magnitude of 1. Next,
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a morphological opening is performed on the image in order to “find” apples within the

image.

Figure 5.4: Morphological Opening

The morphological opening is then subtracted from the image in order to remove inten-

sity in the scan that can be attributed to apples.

After this another larger circular 2d structured element is created in order to detect

large clumps of apples that may still be left in the image. A morphological opening is

then performed on the image and the result of this opening is once again subtracted

from the image.
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Figure 5.5: Second Morphological Opening

The intensity values of the image are then adjusted such that 1% of data is saturated

at low and high intensity. This effectively readjusts the image values in order to restore

contrast to the image after the morphological operations.

Figure 5.6: Image After Intensity Adjustment

5.1.3 Image Segmentation

After pre-processing the image, the image is segmented. A threshold value is selected

using Otsu’s method [22] and the image is binarized. Objects with areas less then 30px
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are then removed from the image.

Figure 5.7: Binarized Image

Figure 5.8: Binarized Image with Objects Removed

Boundaries in the binarized image are then located using the Moore-Neighbor tracing

algorithm modified by Jacob’s stopping criteria [23]. Boundaries with lengths too small

to be the trunk of the tree, less than 300 px, are removed. The remaining boundary

represents the approximate trunk of the tree.
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Figure 5.9: Trunk Boundary

5.1.4 Using Path Planning to Locate the Trunk

In order to determine the location of the trunk within the trunk segment described

above, a graph search method inspired by intelligent scissor segmentation is used. [24]

[25]. The image is cropped to include only the area in which the trunk segment lies.

This cropped image is smoothed using a 2d Gaussian kernel with a standard deviation

of 2. Next a graph is created using the cropped image. First the image is inverted so

that areas of high intensity correspond to low cost. Next the image is iterated through

and a graph is created with one node for each pixel. Pixels are connected with the pixels

immediately above, below and to the sides of themselves. The edges between these nodes

are set to the average cost of the two pixels they are connecting. For example the edge

connecting px and py, E(px, py) =
c(px)+c(py)

2 where c(px) is the cost associated with

px. The uppermost and lowermost points of the boundary surrounding the approximate

tree trunk are then found. Using Dijkstra’s algorithm, a shortest path between the

uppermost and lowermost points of the boundary is found. [26] Due to the way in

which the backscatter X-Ray imager generates images, the thickest area of the trunk

will appear more intense on the scan than the outer edges of the trunk. By associating
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higher intensity with lower cost, we can solve for the optimal path through the graph

and thus find the path through the thickest area of the trunk.

Figure 5.10: Optimal Path Through Trunk

After the path through the trunk is located, the average width of the trunk is estimated

by determining the distance in pixels that one edge of the trunk boundary is from the

opposing edge for each row of pixels in the image. The average of these distances is

then calculated. The pixels to the right and left of the path are then set to an intensity

of zero so that a band of intensities the width of the trunk is removed from the image.

This can be seen as a black line in the image below.
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Figure 5.11: Scan With Trunk Removed

5.1.5 Determining Fruit Yield

With the intensity caused by the trunk of the tree removed from the image, the remain-

ing intensity in the image can be attributed to three main factors; background noise,

remaining plant structure, and fruit. The amount of remaining plant structure present

in the scan is very small compared to the fruit and noise. Therefore, the sum of all

intensity values across the image minus the sum of noise values across the image should

be proportional to the agricultural yield present in the scan.

numPixels∑
k=1

v(pk)− n(pk) ∝ yield (5.1)

Where v(pk) is the intensity at pixel k and n(pk) is the noise at pixel k.



Chapter 6

Conclusions

6.1 Overview

In this paper we have reviewed the importance of precision agriculture in more sus-

tainable and environmentally friendly agricultural activities. Firstly, an overview of the

physics behind Compton Backscatter has been given. Second, the inner workings of a

Compton Backscatter X-Ray imaging machine have been explored. Next, we viewed

scans of trellis grown apple trees in Biglerville, PA, ground planted strawberries in

Naples, FL, and trellis grown tomatoes in Naples, FL. Finally, an algorithmic method

of estimating yield of apple trees was proposed.

6.2 Conclusions

Overall, the scans of the apple, strawberry, and tomato plants look promising. Scans of

the apple trees were clear and fruit were easy to differentiate from the background of

the scans. In the scan of strawberry plants fruit can sometimes be difficult to discern
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from other plant matter. The same can be said of the scans of the tomato plans, fruit

can become difficult to discern from the background, especially in the horizontal scans.

This may be able to be overcome in future scans via use of a Backscatter X-Ray imager

with a more powerful beam. While in theory the proposed method of yield estimation

should work, it is not possible to verify this without ground truth estimates of yield for

individual apple trees.

6.3 Future Work

There are many ways in which the results of this paper can be expanded upon. More

data must be collected with Backscatter X-Ray imagers along with ground truth yield

estimates in order to show correlation between the intensity of fruit in the backscat-

ter scans and yield. With enough data, machine learning approaches could be used to

detect fruit in the scans, providing another way of estimating yield using Backscatter

X-Ray imaging. [27] With improved scans from more powerful Backscatter X-Ray im-

agers, algorithmic image processing methods for determining yield could be developed

for strawberries and tomatoes.



Appendix A

Image Processing Pseudocode

Result: I2

I ← readInImage(’example.jpg’);

medianFiltered ← medianFilter2d(I);

equalized ← adaptiveHistogramEqualize(medianFiltered);

open ← morphologicalOpen(equalized);

applesRemoved ← equalized - open;

medianFilteredApplesRemoved ← medianFilter2d(applesRemoved);

background ← morphologicalOpen(medianFilteredApplesRemoved);

I2 ← medianFilteredApplesRemoved - background;

I2 ← imageAdjustment(I2);

Algorithm 1: Image Pre-processing
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Result: b

level ← OtsuThreshold(I2);

bw ← binarize(I2,level);

bw ← removeSmallObjects(bw);

boundaries ← findBoundaries(bw)

for k = 1 to numberOfElementsIn(b) do

if b(k) < threshold then

Remove b(k) from b;

end

end

Algorithm 2: Segmentation
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Result: yield

bottom ← findBottom(b);

top ← findTop(b);

inverted ← invert(I2);

blurred ← gaussianBlur(inverted);

graph ← imageToGraph(blurred);

path ← Dijkstra(graph,bottom,top);

width ← findAverageTrunkWidth(b);

for i = 1:path length do

I(path(i,1), path(i,2)-(width/2):path(i,2)+(width/2)) ← 0;

end

yield ← 0;

for all pixels in I do

yield ← yield + pixelInI - perPixelNoise;

end

Algorithm 3: Segmentation
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